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i ' A  large number of elastic wave problems which involve one space 

var iab le  are treated, i n  a unified manner, by a system of second-order 
I 

! .. 
1 

hyperbolic p a r t i a l  diffexwntir l  equations, with the gener8liz.d . j .: 
displacements as dependent variables.  

is a n a l y 2 d  by t h e  method of character is t ics ,  yielding closed form 

equatiops fo r  t he  physical charac te r i s t ics ,  t h e  cha rac t e r i s t i c  q u a t i o m ,  * t  - 

i 
f I  This system of R equatfon?r i .  

I ' 

and t h e  propagation of discont inui t ies .  

n a t i o n  along the  cha rac t e r i s t i c  curves a re  established. 

Procedures . f o r  numerical inte-  
I 

Among t h e  

elastic wave problem3 that nay be represented by t h i s  unif ied approach 

are the  Timoshenko bear, plates, b a n ,  and sheets, a l l  including the 

lateral i n e r t i a  and shear effects. Various approximate s h e l l  equations 

may a l s o  be represented. Results of numerical c a l c u l a t i a u  are i n  

agreement with those obtained by other  methods, 
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#In the  theoret ical  analysis of t h e  elastic wave propagation there 

are !in general t h r e e  methods available; namely, tho Laplace transform 
: I * .  

met od, t h e  method of node superposition, a d  the  method of character- 

istics. Due t o  inversion d i f f i c u l t i e s  t h e  Laplace transform method is 

usually limited t o  simple wave equations. 

superpo$tion, t h e  phase' velocity of different  fundamental modes of 

motion a t  d i f fe ren t  wave lengths can be calculated f o r  steady wave motion. 

However, it is not su i tab le  f o r  the  study of t rans ien t  problems wi th  

prescribed i n i t i a l  and. boundary conditions, e2pecially for those inputs 

i d o l v i n g  s t eep  wave f ionts .  

charac te r i s t ics  many important features,  such as the wave propagation 

ve loc i t ies  and t h e  equation governing the  propagation of discont inui t ies ,  

can be obtained i n  closed form without any di f f icu i ty .  

! - 
n 

In the  method of d e  

1 .  
I 
A 

On the  other ha+, from t he  method of 

The governing equations, e i t h e r  exact or approximate, for 'near 

wave raoti.ms can be expressed as equations of motion i n  terms o dis-  

placement components; t h i s  w i l l  be cal led t h e  displacement fo la t ion.  

Alternatively, t h e  governing equations can be expresseb as t h e  equations 

of motion i n  tenns of displacements and stresses, along w i t h  t h e  stress-' 

displacement re la t ions ;  t h i s  w i l l  be callcd t h e  stress-displacement for- 

mulation. 

second order equations; while i n  the stress-displacement fornulation 

the  governing equations are first order equations. 

conditions are sometimes p r k c r i b e d  in t e m s  of stress, it has been 

3 

- 
-i' 

s. 

In the  displacement foxmulation the  governing equations are 
. 

Because the  boundary - 8 
' 

customary in t he  application of t h e  method of charac te r i s t ics  t o  use the  

. .  . .  
! 
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- 'stress'-displacement formla t ion ,  such as i n  References 1 t o  4. I t  w i l l  
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be shown i n  t h i s  paper that  the displacement formulation j 
I 

is much more useful. : 
! 

govern t h e  propagation of discont inui t ies ,  appear e x p l i c i t l y  i n  t h e  equations 

of the  d i sp lace rmt  f m u l a t i o n .  

The wave vc loc i t ies ,  as well as t he  parmeters  t h a t  

1 . .  
i 
! .  This paper b*nr ~ t h  a general mathematical study of a system of * 

' 4  . 
n hyperbolic second-order d i f f e r e n t i a l  equations with two independent - -  
variables. 'The physical charac te r i s t ics ,  as well as t h e  characteristic 

equations, a re  derived. The equations governing the  propagation of 

discont inui t ies  i n  t h e  first der ivat ives  of t h e  dependent var iables  a re  1 .  

a l so  established. 

of the  d i s t r ibu t ion  of t h e  dependent variables behind t h e  wave f ronts  for 

A numerical procedure is thfndeveloped f o r  t h e  calculat ion 

problems with two d i s t i n c t  wave speeds. The procedures for numerical 

known; e.g., recently, i n  [IJ, a numerical procedure has  been applied to  

the  cy l indr ica l  and spherical  wave problems. Leonard and Budiansky @] 

I '  
1 '  integrat ion f o r  problems involving .me displacement var iab le  are qu i t e  well 

i I 
i 
i :  
I (  

have solved the wave propagation i n  a Timoshenko beam which involves two 

' displacement variables.  However, they only t rea ted  the  case where t h e  

two wave speeds are equal. Plass  p] solved the Timoshenko beam problem 

wi th  two d i f f e ren t  wave speeds; but he did not include any loading which 
I 
I !  

excites a d i s c m t i m i t y  along t h e  slower of tho two wave fronts.  The 

procedure developed i n  t h i s  paper, which is an improved version of t ha t  

- given i n  D], can handle d iscont inui t ies  across both t h e  f i rs t  and t h e  

second wave fronts. 

1 I 

I 

I 
. f t  is shown t h a t  a large number of elastic wave problems can'be 

t reated as special cases of t h e  general mathematical problem with n 

governing equations. 
8 t 

The n dependent variables i n  each of t h e  elastic. 
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. I  
wave problcms are generalized displacements. Among the  c x q l e s  with I 

1 s  

i 

l 

one displacement var iab le  are simple di la ta t iona l  and i r r o t a t i o n a l  waves 

. in cy l ind r i ca l  or spherical  caordinatos. Problems with two displacement 

var iab les  include: 

porat ing shear effect ard ro t a ry  i n c r t i a  by Uflyand E61 and Ftindlin [7], 

'the' corresponding bar problem incorparatinp lateral inertia by Mindlin 

and Hemnann [8], and t h e  sheet  problem by Kime and Hindlin [9]. 

Numerical ca lcu la t ions  were performed for many of t h e  n 

the Timoshenko bcan [S], the motion of a p l a t e  incor- 1 

1 

* i 
' I 

.- - 1 - *  

. r i  
I 

4 '  

I .  
1 

. . 

2 problems and 
I 
i 

i f  
I ,*.I 

Examples of problems with three  displacement var iab les  (n - 3) include ' . 

I 

t h e  r & u l t s  compared with known solutions,  
. I  I 

. 
the various theories for t h i n  cyl indrical  she l l s ,  [lo], [lq, and [12]. 

got n - 4, we have t h e  th ick  cy l indr ica l  s h e l l  equations, such as those 
I 

-I i - T? by M i r s k y  and Hsrrnann b3]. F o r n  - 6,  we have t h e  p 

of 'wave propagatiaa in h e l i c a l  springs by Wittrick [14]. 1 1  . .  
i 
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Let us consider the following system of n second order p a r t i a l  

i 
* 

b 
. '  . .  

1 h 

I 

cb 

. I  

.. 
f 
i 

11, IMETHOD OF CHARACTERISTICS FOR A !3YSTM OF SECOND ORDER EWATIONS 

I 

i * 1, 2, 3, 0 . 0  n 
a i 

, '  
! 

- - Q I 
are continuous, and functions of x only. where ciD 

Einstein summation convention w i l l  not be used i n  t h i s  paper.) 

(The 

We 

O i j  and %j  
.I 
. !  

s h a l l  l i m i t  our discussions t o  continuous functions ui, although the i 
I I i 

I 

! 
derivat ives  of ui may be discontinuous, For regions i n  the  physical 

plane (x,t-plane)' where t t  3 firat p a r t i a l  derivatives of ui are /on- 
i 

tinuous, we ray write 
I 

i i 

I 
@.= 1, 2, 1.0 n) 1 dx + at ( U i , n )  d t  

where I I h 

(2) 

(i 1, 2, .a. n) (3) 

i il 

a a 
:d(ui,x) I ax (Uf,x - ,  
I 

a a 

1 

! 
i 
! 

1: 
i 

. 'd(ui,tf = 3z %,t + 3t ("i#tl dt 

I hi aui 
iDx ax I -  . a t  U. 

1 D t  
D = -  e .  U 

3 Equations (1) t o  (3) fora a system of 3n hyperbolic equations which may 

be used to  solve for the  3n second derivatives of uiD i f  the  d is t r ibu t ion  ' 

i 
of uiD together with t h e i r  f irst  derivatives are known along a cer ta in  curve: 

8 * 

i 

t .  

c. . .  

! 

i 
! 
i .  
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, 
. .  
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I 
I I 

along these direct ions w i l l  be called the physical characteristics, or I !  
I 

simply characteristics, In general, t he  charac te r i s t ics  om* curved l i n e r  a . 

except for +ha c u e  .of canstat 'ei, . where 
c3 I 

the charac te r i s t ics  
L 

:I: - 
; Solving the  system. of ~n q u a t i m s ,  (1) t o  for @ U ~ / O X ~  , we 

obtain 
9*U1 N1 
- I -  M axZ . '  

1 .  

8 

I 

n -  

0 0  0 e.. o o '  
-L.. 
J 

1 0 -1/c; j 
i i 
i 

6) 
I 

i 

i 

. !  

! 
I 
! 

i 
i 

i 
1 
I 

! 

dx d t  0 0 0  0 e. 0 0 . 0  

0 0  0 e.. 0 0  
- e  

0 dt  

0 0  0 1 0 r l / c f  0 0 . .  

0 0 : 0 . .  dx d t  0 0 * e o  

0 dx d t  0 b o 0  

\ 

-.. .. 
I 

I .. 
' ;  

t 

0 0  0 

i e.. 

1 

! 

' 1 0 -l/ct 

dx d t  0 '  

0 dx d t  

* .  * . .  

t 

1 I .  i I . t i  
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I 
1 

e 

0 -0 

0 0  

O ?  

1 0  

dx' dt 

r o b  

6 

I 

i 

i ! I  

C 

+ 

o a a  

moo 

o m *  

0 

0 

0 .  

I 

I 

; I  G 

N1 = 

\ .  

0 0  0 

0 

0 

0 

0 

0 

-1/c; 

0 

d t  

0 *l/$ 
.. 

dt 0 

dx d t  

0 0 

0 ' 0  

0 

-1/c; 

0 

d t  

m o a  
I 

f 
i 

, i  

' I  i 

. 0 . 0  

0 0 .  - 
i 

0 0 

* !  
1 :  
1 

1 0  O I  0 
.. . 

A dx d t  
0 I O  4 

' 0  O ^  

1 -. 

o d x  .: . . r '  I !  - f i  
_ j  I 

' !  This second der ivat ive is indeterminate if  both M and N1 Vanisha The 
I 
! 
I 

L !  

I 

, 

vanishing of H yields ,  after applying the  Laplace expansion technique 

for d e t e d n a n t s ,  4 

I 

The vanishing of each of t h e  braces i n  (7) leads t o  two famil i  ' of 
physical cha rac t e r i s t i c s ,  e,ga, from t he  f i r s t  brace, 

I 

I 
I .  3' I ,  

dx = t c1 it :. 
I 

which w i l l  be ca l l ed  the  C; and Ci charac te r i s t icso l  Altogether, (7) 
'I ! '  - produces 2n families of physical charac te r i s t ics  C; and C; where t 

along and C c  
3 

r 
8 

I ( 8 )  
1 

G 

I ,  

respectively 0 
.i 

' 1  e. 
, I  . . 3 ,  

I 
. I  

i 
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It is customary t o  c a l l  t h e  ti's t h e  wave veloci t ies .  
I 

. The vanishing of N1 yields  
c4 

f 
i 
i 
I 
i 
! 
i 
. . ,  

1 I . '  

1 

1 

Assuming t h a t  c1 it not equal to  any other E%, we observe fram (93 t h a t  

along the  directions dx/dt * fc l  , ! 

C d(a A , t  ) 5 cA(du AeX ) 4 0 clRAdx = 0 ' 00)  
i 
i 

These two w i l l  be cal led the charac te r i s t ic  equations along the Ct and i 
i 1 

I I C; charac te r i s t ics ,  respectively. 

t ha t  (10) is true even when cA is equal t o  one or more of the  o ther  ti's. * I 

1 

%e solut ion for a2ui/ax * from eqs. (1) to (3) yields  the  cha rac t e r i s t i c  
' 

cquat ions 

I t  can be shown by a l imiting process 

- - 

i along (dxldt) 9 *c;, respectively. The vanishing of the  denominators i 

i '  
and numerators of  the  solutions of a2ui/axat and a2ui/at2 yields  ident ica l  

r e su l t s  as ' (8)  and (11) . Since only continuous ui a r e  being considered, 
I 
1 
i - -  
1 

- we may write 

dui = u dx 4 ~ ~ , ~ d t  , , i = 1, 2, ... n (12) 
i ,x 1 . i  

-. . i .  
, ' '  along any direction. In  regions in the  physical plane where the  first 

. derivatives of u are continuous, (11) and (12), which consis t  of 3n i 
equations, uay be used to  solve f o r  t h e  3n variables ui, ai,x, and u ~ , ~ ,  

i f  proper boundary and i n i t i a l  conditions are specified,  

i I *  ! 
1 .  . 

. &I 

8 
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! 

8. Prwagation of Discontinuities i 
i 
1 1 

Along t h e  physical character is t ics ,  t hc  var iables  ui, uilX, and 
I 

. !  
i u a re  g'overned by t h e  charac te r i s t ic  equations (11). Across t h e  

i ,t 
I 

physical charac te r i s t ics ,  the second derivatives of u, may bs discantinuow;' 
A 

these d iscont inui t ies  do not affect the appl icabi l i ty  of (ll), which d m  

' not ' conta in  second derivatives of ui. Discontinuities i n  the f i rs t  

derivatives of ui ruy a l so  exist across t h e  physical charac te r i s t ics ,  

bu t  these w i l l  not be governed by (11) , Discontinuities i n  u and 
* i , x  

u 

: is applied a t  a pa r t i cu la r  X. The equations f o r  t h e  propagation of there 

occur when a f i n i t e  s t ep  input (or jump input) i n  these var iables  
i,t 

1 discont inui t ies  w i l l  naw be derived, ! 

F i r s t ,  let us demonstrate t h a t  l i nes  of discont inui ty  i n  the f i rs t  

der ivat ives  of uiare necessarily character is t ics .  

t h a t  is not a character is t ic .  

der ivat ives  'of ui exist across DE, or between FG and DE when FG * DE, 

as shown i n  Fig. 1, 

divided by DE, a l l  functions are cuntinuars, 

Consider a l i n e  DE 

Assume t ha t  d i scont inui t ies  i n  the first 

! 
Further  assme t ha t  within each of  t h e  two regions 

Integration of (ll), w i t h  ' 

i lower signs, along m y  C; cha rac t e r i s t i c  from A to  B, where A is a point 
J 

on DE, y ie lds  

I 
r -- 

. . .  j I .  

B t o  approach A, (13) becomes f 
i 

FG t o  approach DE, and 
l 

. (14) 
+ c i*pi , J  0 0  - - -. . 

B t o  approach A, (13) becomes 
i 

If $e allow FG t o  approach DE, and 
l 

. (14) * .  , - - -. 

. I  

designates the value of discontinuity (or jump) i n  

e.g., ! '  

i 

i -  
i 
t .  

I 

as B + A  
r .  

. .- . .  
' . '  

I 5 



. 

1 

* !  

! I n  wri t ing (14) w e  a l so  assumed t h a t  Ri is  bounded and c. continuous; A 

therefore ,  t h e  r igh t  hand s i d e  of (13) 

Integrat ion along CAO as C approaches A, yields 

vanishes as dx approaches zero. i 

t 

I + 
I f I , 

I 

. I . _  
i .. I 

Combining [14) md (151, m abt8in 

1 

From t h i s  w e  conclude t h a t  d i scont inui t ies  of f irst  der ivat ives  cannot 

e x i s t  across a l i n e  t h a t  is not a charactor is t ic .  
I 

- Now, let  us consider d i scont inui t ies  i n  u. 

p a r t i c u l a r  charac te r i s t ic ,  {, where c i s  not  equal t o  any other  ti's. k .  

and u ~ , ~  across one 
1,X 

I 

' *  . 
Write (11) with the lower signs,  and in tegra te  it along t h e  5 I !  . I  

characteristic frtm A t o  B, as s h m  i n  Fig. 2, As B approaches A, 
I 

1 ,  i 
or as < (2) approaches < (l), we'have 

i / I  
I 

In tegrat ion froa < (1) t o  < (2) along t h e  o ther  Ci cha rac t e r i s t i c s  

yields the same r e su l t s ,  or 
I 

8 I 4. - --- I 
. . 

I t i  
! *  

I 
Since % is no t  equal t o  any of t h e  o ther  ti's, every C; draracteristic ' 

4 = I 1, 2, .ma k-1,  k+l, e.. n. Integration along C; gives 

pasl ing through point  A must in t e r sec t  the < (2) cha rac t e r i s t i c ,  where I 

* 

I 

i 
1 '  

C&ining (17) and (18), and assuming t h a t  cL, 

continuous along C; (21, we obtain 

end u are 
z,x 



. .  - " 10 
s i  
! I  .- , .  
8 '  

I - - - .  

C a t  and uc,x' This ind ica tes  thd% across <, discont inui t ies  i n  u 

: t + k, cannot exist ,  Thus, ~ . s c o n t i n u i t i e s  i n  u and u are not 

coupled with d i r con t inu i t i e s ' i n  other  u 
t . k , t  k,x 

I i,t 
and u ~ , ~ ;  thorefore tney can - 

be i t r ea t ed  separately.  ' ' 1  

0 :  : as I they propagate along < are dtained by writing (111 Mice, both with I 
t he  upper signs,  once along ( (2) and t h e  o the r  along < (l), and 

subt rac t ing  -one from the other, Thus, as < (2) approaches C; (1) , we 

have 

< 

3 

, I 0 I 

0 

J n  
d r s , t i  - dr%,xi = -% ji1 (%jc j3  + B k j b j , j )  dx C20) 

i 
A 

I 
A 

Since u 
6 i ;  - j 

(201, and u t i l i z i n g  (19)~ we ahtain 

are continucvus throughout, I. 3 = 0 , by i n se r t ing  (16) into 
A 

. ,  ~ . 

or' - I f  . 

This may bg integrated t o  give 

where 5 is a constant, Fram (22) and (161, w e  habe 
i 

+ 
[%,tl -% 'k ' I2 exp /(Bkk/2) dx , along Ck . 

). 

! 

' (23) . 

Follawing the  sa& procedure, it can be shown t h a t  the propagation along $ 
8 

of discont inui t ies  4' is governed by i 

i 
i 

i 
(24) f 

1 . .  

I 

- 1 -  



* ,  

1 

, . .  . .  

, 

c. Problems with  Two of t h e  C i ' s  Equal 

If two of the  ci*s are equal, (22) t o  ( 

I 
I .  

! I1 

1 :  
i 
I .. ; 
! 

I) are not applicable.. 

Let w assume equal t o  \ , t hen  t;*l coincides w i t h  < and . I  

! 
; w i t h  5 ; the equations governing thejumps [% a and [uk t] w i l l  

# j ; :  
c;+1 
be derived belw. 

,sect ion,  it can be shown t h a t  (17) and tho corresponding e&atioru for  
1 

Following the same procedure as in t he  previous 
* I  * t  

1 

: C i  still va l id  i n  the  present case, or, I 

f .  
! i = 1, 2, ... n 

/ I  . .  * I where the upper sign is for discontinuities across C$ and the lwer 

sign f o r  those across $ , respectively. Furthermore, analogous t o  (19) , ' 1 

I ; :  

equations obtained from (25) w i t h  i - k and i = k*l, respectively,  and 

solving t h e  resu l t ing  two equations for [% 1, w e  obtain 
. 

I ax 

-. 

! 
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1 .  

8 . zmir secondorder  equation f o r  [% '1 aay be integrated readi ly  i f  the  
,X 

values of 
! 1 

3 m d  k4J ff one point  are given, since the  value of 
I -  - ,x . I  

d .  at ohis point CM be obtained ftanr (271 and (25). Once * #  5 5+,3.3 / 
I 
I . .  [u 7 has been determined, & 7 may be obtained from (25). : i  0. k,x ,t 

.: 
. D., Generalized Stresses  - 

f I In  stress wave problems, - the functions ui correspond t o  generalized I - i ddsplacement variables and t he ' u .  

.as w i l l  be  sham i n  a later section. 

generalized stress variables are also of p rac t i ca l  importance and sdme 

of these stress variables ray be prescribed as boundary conditions. 

correspond t o  generalized ve loc i t ies ,  
1 D t  : I  

' !  
' I  
I !  

I 
I In  these problems, cer ta in  

i 
- 1  

The generalized stresses w i l l  be designated as S, and are defined aS 
1 .  

1 I 1  
! i ' I  

i 
In  a given problem the  number of ReneralizcJ stresses Sn is e i t h e r  equal 

go, o r  greaier  than, the  number of generalized displacements ui ; 

although the  number of S1 t h a t  can be prescribed as bound- conditions 

" *  
1: 

1 t i  
' 

! .* - 
! .  

! a 

. .  i is usual ly  equal t o  the  nunher of generalized displacenrent. r -  

I 
When there are  jumps i n  u , t h e  generalized stresses w i l l  a l so  

i 
i 
i 

, I  

, 

(32) 

I .. 

m,x 
have jumps. Consider the case of a jump i n  u 

character is t ic ,  Writing (31) twice along the  two 

d ta rac t e r i s t i c  and subtracting one fran the  - 
+ 

across C. o r  C; , rl- 1, 2, ... cs3 = b. k , S  
I 

where the  conditions of [ul - 0 are  used. The variation of [Sn] as it 1 
,+ -- - c- -L&-:--A e......, f%q> r931 -,,A 1241~ ,,= frm 
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i -  
: I  
t i  
. .  

'The governing equations (1;- are of second order i n  both x and t; I 

I 
, I  therefore,  two i n i t i a l  conditions and two boundary conditions must be 

I 
spec i f ied  f o r  each of t h e  varicibles ui . The spec i f ica t ion  of a l l  . :  i I I I .  

i '  ui,4 and u. functians along the  i n i t i a l  l i n e  t = 0 cons t i t u t e s  a ! i  
1 ,t - I  

I 

' :  
p+rly posed initial condition. Note that t h e  spec i f ica t ion  of u i,x * 

along the  i n i t i a l  line t = 0 i s  equivalent t o  specifying ui along 

t = 0. t i  
I 

i 
Aiong each of t he  boundary Lines x - xl and x - x2, one boundary 

condition f o r  each ui m u s t  be sF-x i f ied .  One properly posed boundary 

condition is t o  s p k i f y  a l l  ui's along x = x,. and x = x . Any o f  t h e  
2 

gegeral i ted stress, i e t e a d  of t h e  corresponding displacement, may also 

I I 

I :  
* I  
- 3  be spec i f ied  along these  l ines .  ' For a p a r t i k l a r  value of i, say i = k, . I  

* /  1 
k . y e i t h e r  u or Sk, but  no t  both, may-be specified. 

generalized stresses is grea ter  than n, usually only n of the stresses 

can be prescribed as boundary conditions, t h e  rest are not f eas ' b l e  from 

a prac t i ca l  engineering point  of view. 

If t h e  number of  

, 
I 

; 
I 

- i  i I 
Properly posed i n i t i a l  and boundary conditions are those w i ch  assure P 

a unique solut ion of the  equations, Uniqueness of so lu t ions  td eqs. (1) , c -  

i i  
. . i --< 

I 
- !  

r ! 

w i l l  be discussed i n  another paper. I 

; i 
i 111 N U E R I C A L  PROCEDURES I 

i 

Once the  cha rac t e r i s t i c  equations of a system'of hyperbolic i :  

d i f f e r e n t i a l  equations are known, they can be integrated readi ly  by 

numerical means. For l i nea r  equations, t h e  numerical in tegra t ion  is - 
f 
I 

N e  s h a l l  l i m i t  our discussion;  
! 

equivalent t o  a s t r a i g h t  f&ard solut ion of simultaneous a lgebia ic  I 

equations and involves no i t e r a t i o n  process. 

to  numerical procedures 'for t h e  case of two dependent variables (n = 2) and 
t 

conbtant wave ve loc i t ies .  i 



- .  . 
. I  

' .  I 
i 

i 
I I 

1 

f in i te -d i f fe rence  form of t h e  charac te r i s t ic  equation (ll), wit! i = 1 1 

A. Cont';nuous noundary Conditions 

! 
7 :  

! 
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I 

I 

In  t h i s  sec t ion  we s h a l l  e s t a b l i s h  the procedure f o r  t h e  ca lcu la t ion  

of regions where u and u havo continuous first The general 

case of n = 2 and c1 # c and those with 
i n =  1 

A 2 

w i l l  be considered; 
L 

can be treated as spod81 c.;lret.without any diff iculty.  I 

i 

1 
In perfowing  t h e  rareerical calculations,  t he  physical plane is 

'first divided i n t o  a network by the  cha rac t e r i s t i c  l i nes ;  t he  character-  

i s t ic  and cont inui ty  equations are then wri t ten i n  f ini te-difference 

fom i n  terms of t h e  values of the'dependent var iables  a t  the mesh poin ts  

of the  network. For problems with n = 2, t he re  a r e  four  families of 

cha rac t e r i s t i c  l i n e s  i n  the  physical plane, with each cha rac t e r i s t i c  

in te rsec t ing  every one of t h e  o the r  three cha rac t e r i s t i c  families. 

! 

. I  
i *  
I '  

The 

r e su l t i ng  network contains too aany i r r egu la r  mesh poin ts  t o  be p r a c t i c a l  
, 

f o r  numerical calculations.  For simplicity,  only Ci and C' character- ! 
; A 

' istics are used as t he  amin network, where cl > c2, as shown i n  Fig. 3; i 
! 
! 
, 

I 

and only a t  t he  mesh poin ts  of t h i s  network w i l l  t he  dependent var iab les  

be calculated.  Values of t he  var ioblcs  ul, u~,~' u ~ , ~ ~  u2, uz,xe and 
I 

u 2 , t  at  a typ ica l  i n t e r i o r  point  1 may be calculated i f  t h e  corresponding 
I r -  . 

. values a t  neighboring poin ts  2, 3, and 4 are  known from previous calculat ions.  
+ i t  To a c c o h l i s h  t h i s ,  draw C2 and C; charac te r i s t ics  from point 1, in t e r -  i i  ! 

and! the  upper signs, is 
I 
I 

i ; i  
i I  

! !  



. .  
e 

where a s i n g l e  numeral i n  a parcnthesis indicates the point a t  which 

t h e  var iab le  is evaluated, a doublc numeral within a parenthesis 

designates the  average of t he  var iable  between the  two points. Three 

o ther  f ini te-difference equations may be  wri t ten for t h e  cha rac t e r i s t i c  

equation< along Ci between points  1 and 3, along Ci between points  1 

and S, and along Ci between 1 and 6. These f in i te -d i f fe rence  character- 

i s t i c t e q u a t i m  may be w r i t t e n  as 

I 

! 

1 
i 
1 I 

. ,  

I 
c 

I 

where A( ) represents difference,  and a ba r  over a letter designates 

ayerage. 

I 

1 
The cont inui ty  qua t ion  for u, and u2 are w r i t t e n  i n  f in i te -d i f fe rence  

fow along Ci and C; , respectively,  IS 

? 

- I The four c h a r a c t e r i s t i c  equations together with the  two cont inui ty  'equations, 
/- 

I I 
I 
i .  

(35) and (36), cons t i t u t e  s i x  e q u a t i q  fo r  t he  s i x  unknowns u l ,  u , , ~ ,  

; and u a t  point 1. 1,t' u2' u2,x' 2 e t  U 

.. For mesh points  on t he  l e f t  boundary l i n e  x = x 1' two of the  

I 
. .  4 4 

charac te r i s t ics ,  C1 and CPn are absent. I f  u and u are spec i f ied  along ' 

1 2 ' 1  
* x - x,, ' th'e remaining.fwr equations are s u f f i c i e n t  f o r  f inding t h e  I 

and up, If S1 and Sa are 1,x' Ul,t, %,x' : I  remaining four  unkn&s u 

spec i f ied  along x m xl, then the  two f ini te-difference equations obtained 
' ! I from (31) with II I 1 and m = 2, replace the f in i te -d i f fe rence  c h a r a c t e r i s t i c  

equations along C, and C,, and t h e  system of six equations necessary for t h e  t 

+ + 
I 

de t f r r ina t ion  of t he  six variables is again complete. i :  I !  
I 1  
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B .  Discont inui t ies  in the  F i r s t  Derivatives 

When t h e  input a t  x = x, involves discont inui t ies  (jumps) i n  .. i 

or S1 these d iscont inui t ies  propagate along t h e  Ci l ine ,  which 
5 , t '  , 
has an equation x - x, + t', where t' = clt. n o  propagation o f '  these  

jumps i s  governed by (223, [23), and (32), with k = 1; no t p e c i r l  d i f f i -  

crtltfes will be mcauntered i n  t h e  numerical in tegra t ion  procedure, as 

discussed i n  [I], However, when the input a t  x - x1 involves jumps i n  

u * u  or S,, a d i f f e ren t  s i t ua t ion  ar ises .  These d iscont inui t ies  

propagate along the  C, l i n e  which has an equation x = xI + ut', where 
2,x' Q,t' 

+ 
1 
I 

y = IC2/ c1 In general, t h i s  l i n e  does not i n t e r sec t  t he  main network 

at the  mesh points ,  as shown i n  Fig. 4a. This l i n e  may be replaced by 

a "tig-zag line" with discontinuous slope but  passing through the  regular  
- 1  

! 

I 

I 
i .  

i 
! 
I 

mesh poin ts  [4]. 

by t h i s  approximate "zig-zag line" gave overal l  good qua l i t a t ive  r e su l t s ,  

Numerical r e s u l t s  indicated t h a t  although t h e  treatment ' 
I 

, 

. .  

f + 
t he  accuracy was less than sa t i s fac tory .  In  t h i s  paper, t h e  exact C, 

line', x = x1 + pt ' ,  is used, and is not replaced by aryapproximate l ines ,  

A t  each poin t  where t h i s  l i n e  i n t e r s e c t s  l i nes  of the  regular network, 

va lks  of  t he  dependent var iables  w i l l  be calculated.  Details of t h i s  . i ' 

procedure, which is similar t o  t h e  one, used i n  E.9 for  t h e  plate bending . I  
; I.-- 

. I !  
i !  problems, w i l l  naw be given below. 

I 
? 

t i t  

I 
I 

I 1 -- 
I *  ! 

- 1  1 

t 
-We s h a l l  c a l l  t h e  l i n e  x = x, + y t '  the  jump l ine ,  and introduce 

a new coordinate system (a,8) which consists of  t h e  C, and C; character- 

istics as shown i n  Fig. la, 

of constant a and constant 6 l ines ,  with constant increment 6 it both a 

+ i '  

/ i  
The f ini te-difference network is then composed. : 

* *  
I '  

. ,  

\ '  

L - 
I' 

and 8. The point of in te rsec t ion  between t h e  jump l ine  and a p a r t i c u l a r  

! 

I 

! i  



i ... . . 
. . .  

a rn constant l ine ,  say a = mi3 line, where AI is an in teger ,  is at  

t 

. (37) IOU 6 = (GI 16 

I n  general, t h i s  8 is not an integer;  therefore the  in te rsec t ion  is 

\ nz t  located at a regular  aesh  point. I n  calculat ing t h e  values of the  i 

variables a t  & ragular mash p f n t  adjacent t o  t h e  jump l ine,  three typa 
L - " 1 ;  

I -  
of net  may ,be encountered. 

with each s i d e  of length 6, 

A net  is defined as a square i n  the network , .  , 
0 1 i  . -  

u 

A'net is cal led type I i f  the  jump l i n e  . 
u - 

intersects both of the  a = constant lines of t h e  ne t  and does not 

i n t e r s e c t  t h e  6 - constant l i nes  of the  net. 

used f o r  t h e  calculat ion of values a t  point B, is of type I. 

juu@ l i ne ,  while proceeding upwards, i n t e r sec t s  a 8 = const. l i ne  f i r s t  

andithen an a = const. l i n e  of a net ,  then t h i s  'net is of type XI, such 

as n e t  KLGB. 

1. 

The ne t  ABCD i n  Fig. 48, - - 
If the  

i 
1 

If it in t e r sec t s  f i rs t  an a - const. l i n e  and then a 

6 = canst. l i ne ,  then the n e t  is of type 111, e,g., ne t  mIc, 

detect ion as t o  t he  type of a ne t  may be accomplished as follcWs, 
i 

a n e t  with s ides  a = m6, a - (w*l)6, B = nb and 8 = (n+l)6, where m and 

The 

For - 
i 

J. 
I 

n are integers ,  it is type I i f  
A 1 - a ;  

y m - n + r l ,  O s c l < l  4 . 

y(w1) = n + t2, 0 1 t2 1 
6 I 

I .  

1 '  

where y' ( l - u ) / ( l + ~ ~ ) .  The net is type 11, if 

i 

. .  
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The ne t  is type 111, i f  
i 

* .  * .  

I 

: A t  a mesh point an t h e  jump l ine ,  each of t h e  var iables ,  

culated from (22) and (23). We s h a l l  now discuss t h e  f in i te -d i f fe rence  

s o l u t i v  of t he  governing equat ions ' for  a type-I net. Referring t o  

Fig. 4b f o r  t h e  type-I ne t  ABCL), i t  is assumed t h a t  values of t he  

var iablea.at  points  A, E, 0 ,  and C arc  known from previous calculation. 

Values a t  point F w i l l  now be determined. 

point F p a r a l l e l  t o  the  C; family of curves; l i n e  F-2 is also drawn - 
throuih point F p a r a l l e l  to  the  CT family. The values a t  point  2 and 3 

Y 

Draw l i n e  F-3, through 

a re  obtained by l i n e a r  interpolation. 

(35), (36), and four of t he  form of (34), evaluated a t  proper points ,  

We now apply the s i x  equations, 

t o  obtain t h e  s i x  unknowns u ~ , ~ ,  U 

For t h e  cha rac t e r i s t i c  equation along F-2, t h e  jumped values 

t-at point  F must he  used; for t h e  equation along FC, 
I 

unjumpedvaluesat F are used; for thc  q u a t i o n  along FE I 
! 

and E, t h e  jumped values of u and u are us&; for the c h a r a c t e r i s t i c  s 

2 ,x 2 ,t 
equation alongF-3as w e l l  CIS t h e  two continuity equations, t h e  unjumped 

values of u and u a t  point F must be used. tiaving obtained the  

values of t h e  var iables  a t  F, w e  may now determine those a t  B. 

uzBx@ U Z , t B  ul ,  and u2 at  point  F. 

a t  both poin ts  F 
i -  

. i  : 
2 ,X 2 , t  

I Fig. 4c 

. shows t h e  network necessary for the calculation of t ~ ~ , ~ ,  u -  2B t ~ ~ , ~ ~  

ond.u a t  point B which is  a regular  mesh point. Again the system 
Ul,t@ 1 I 

of s i x  equations is u t i l i zed ,  where jwnped values a t  point F must b e  used. 

Values a t  point's'5, 6, end 2 are, again, determined by l i n e a r  interpolation. '  
1 

I '  * .  

1 : .  
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For the  o the r  two types of nets,  similar proccdures 

The proper i n i t i a l  conditions f o r  t h i s  case require  the  

and u along t = 0.  For a l l  the example I 
Of ' A , t D  ' Z , t D  uABX' 2 DX 

problems solved in  t h i s  paper, t h e  i n i t i a l  conditions ore  
t 

x d X S X 2  fi 
1. 1 

A t  x = xl, properly posed boundary conditions require  the  
1 * 

s p e c i f i c a t i 9  u1 o r  SA; and, uz or S,. 

x = x2; however, i n  many of t h e  problcms where x, = - w e  w i l l  r equi re .  

The same can be sa id  f o r  
.z . 

regular i ty  of t h e  two variables  a t  inf in i ty .  

The region between x = x1 + c A t  and t = 0 i n  the physical plane 4.y 

contains t h e  t r i v i a l  solut ions o f  vanishing der iva t ives  of uA and u2. 

Along t h e  l i n e  x = x1 + clt these der ivat ives  are a l s o  zero i f  t h e  

boundary condition at  x = xl, t = 0, docs not include d iscont inui t ies  

i n  t h e  functions u . or SA. When discolr t inui t ies  i n  these 
ABXB ' A , t '  

-L 

var i ab le soccur  a t  x = xA, t = 0, they w i l l  propagate along t h e  l i n e  

x 9 x A  4 cl t  according t o  (22) and (23) f o r  k = 1. 

U o r  'Sp are prescribed m e n  discontinuous functions of u, ,x, 
2 #tB 

at x = xl, t - 0, these  d iscont inui t ies  w i l l  propagate along t h e  l i n e  

x = x1 + c2t, according to  (22) and (23) with k - 2. Within the  region 

between the l i n e s  x - x1 + c2t  and x = xA + cAt,  the  der iva t ives  of  u2 

are i n  general d i f fe rep t  f r o m  zero, although they vanish on t he  l i n e  

x = ICA + C A t .  

For problems with cA = c2, no special  d i f f i c u l t i e s  w i l l  be encountered 

s ince  a l l  cha rac t e r i s t i c s  i n t e r sec t  a t  regular  mesh points. 

inputs, t h c  so lu t ion  of eq. (30 ) ,  instead of (22) and (23) should be used. 

For jump I 

I i *  
i '  \ i 
i t 
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1 . , A large number of problems'in l i nea r  e l a s t i c  wave propagation and 

From thcse unif ied 
I - 

vibrbt ion can be arranged i n  the form of eqs. fl). 
t 

equations, t h e  wave propaRation vc loc i t ies ,  ci, and the  parameter Bii, 

which governs the propagation of discont inui t ies ,  are immediately known, 

In t e following, we s h a l l  discuss some examples i n  elastic wave 

problems i n  r e l a t ion  t o  t h e  unificd cquations. 

comparison of the  r e s u l t s  from our numerical calculat ion with those 

obtained by others  w i l l  a l so  he incliided.. No discussion w i l l  be given 

on the  der ivat ion of  t he  various approximate wave equations; emphasis 

w i l l  be placed on t h e  analysis and solut ion or these equations. 

I 

i, 
For t he  cases of n = 2, 

0 

I 

I 

Q A swrmaryof sme-of the problcms w i t h  n = 1 and n = 2 are given 

i n  Table I and XI, respectively. 

t h e  name of the  physical problem; the  second raw gives t h e  authors whose 

notations,  w i t h  minor modifications, have been adopted here; t he  rest 

of t he  r o w s  list the  coefficients i n  eqs. (1) and (31) t h a t  each of t h e  

physical problems assumes. 

e l a s t i c i t y  E, Lame's constants X and G, shear correct ion 

f a c t o r  k*, p l a t e  nodulus D, are standardized for a l l  cases, 

space var iab le  i n  cyl indrical  or spherical  coordinates is represented 

In thesc tab les ,  t he  f i rs t  row gives 

Certain notations, such as modulus o I\ The r ad ia l  

1 -  

by r. 
E 

i l  A. Problems with One Displacement Variable (n = 1) I 
' 

For the  cy l ind r i ca l  and spher ica l  d i l a t a t iona l  waves, t h e  governing 

equations fcr homogeneous media such as eq. (10) of  [l], are w e l l ' k n m ,  
b' 

I 

i 

I 
I 

i 
I I 
I 

1 4 I 
I 

I I 

r .- ! .  

. .  
- . .  .. --  
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I 

I 

i 
1 Results of numerical calculations of charac te r i s t ics  a rc  a l so  
1 

given i n  [I.. . 
hmogcneous materials are t reated by Goodier and Jahsman Ed. 

The cyl indrical  rotary cquivoluminal (shear) waves i n  I 

I The I 
I 

1 

corresponding problen! for nonhomogeneous media a re  solved by Sternberg 

and a a k r a v o r t y  El by the  Laplace t ransfom methad; and by Chou and 
I 

I 
1 

I 
1 

Schs l le r  by t h e  methad of characteristics. Solutions of tho ! 

cyl indr ica l  longitudinal equivoluminal waves may be found i n  u. In  

Table I,  the  corresponding equations f o r  a l l  these cases with var iable  

s p a t i a l  d i s t r ibu t ion  of e l a s t i c  properties (nonhomogeneous) are presented. : 

? 
l 
3 -  

i- o 

B. 

- , Only twotgeneralized stresses, S1 and S2, are l i s t e d  f o r  each case 

i n  Table 11. 

conditions. 

problem, usual ly  (except the beam case) appear i n  the  stress equations 

of motion; however, they may not be prescribed as boundary conditions 

and they a r e  not needed f o r  t h e  solution of t h e  problem i n  terms of 

generalized displacements. 

Problems with TWO Displacement Variables (n = 2) 

These are t h e  two t h a t  may be prescribed as boundary 

Additional generalized stresses, such as Me i n  t he  p l a t e  

After the elimination of one displacement variable,  t he  two equations 

i i I o motion of any of the  n = 2 problems may be expressed as one fourth 

. ! I  order equation. 

wave ve loc i t i e s  and the  factors Bll and 822 cannot be detected readily. . 

However, front t h i s  s i n g l e  fourth order  equation the  
I 

In  a l l  the  numerical calculations,  - 1Ssspace points  are used; which 
1 

rdquired an averagemmputing time of 20 t o  30 minutes on an IBM 7040 

. 
. .  

f '  

1 i 
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Timoshenko Beams 

The governing equations, t h c  wave ve loc i t ies ,  and the  equation 
I 

governing . the discont inui t ies  f a r  beams with var iable  cross-sectional 

area and var iab le  e l a s t i c  properties are in agreement wi th  those 

obtained by Leonard and Budiansky [2]. In [2] , they also solved the  

. beam problem with t w o  wave speeds equal by both the  method of character- 

istics and t h e  method of Laplace transform. In par t icu lar ,  they 

obtained clos6d form solutions for i n f in i t e  beams with either s t e p  

veloci ty  OT s t e p  moment input applied at t h e  end. 

can t i lever  beam subjected t o  a s t ep  velocity a t  the root was calculated 

0 1 

The case of a uniform 

by t h e  present technique; the  r e l a t ive  difference between our numerical 
i 

r e s u l t s  and eq. (C14) of [ Z ]  is less than 0.055. 

, ' Boley and Chao EO] nresented thc Laplace transformation solutions 
I.. 

t o  four  types of loadings applied t o  a semi-infinite beam. 

loadings applied a t  x - 0 are: 

These 
I 
I 

I a. Step veloci ty  and zero bending moment, 
f 

1 C. S t e p  angular velocity and zero shear force, and 

b. Step moment and zero displacement, 

I 

d. Step shear force and zero rotation. 
I 

These problems were solved by the present technique; our numerical r e s u l t s  , I 

found t o  be i n  good agrcement with t h e  an t e s  of [24 except i n  case 

we (b) I where a s l i g h t  discrepancy i n  moment exists, as shown i n  Fig. 5 .  I 
I 

' Plass presented solutions t o  eleven types of loadings applied 

t o  a semi-infinite beam, by us'ing a numerical procedure similar t o  t h e  

preient  one. IIe applied various types of support conditions and*il.pact 

1 I 

conditions where in 

, .  
i 

every case the impact is a pulse i n  

. .  . .  

the  form of a 
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fnaif-sjJe gave; The problems prczented i n  Figs. 1, 4, 6 ,  10, 11, 12, 
b M 

and 13 of -[3] were solved by t h e  present technique, The solut ions were 1 - I 
1 . found t o  be i n  good agreement with those of 131 except i n  one case. 

For t he  case of half-sine ro ta t ion  impact with zero shear,  our r e su l t i ng  

wrmkat d i s t r ibu t ions  8m one-fodth i n  magnitude of those presented i n  
I 

, 

Fig\ 13 of [3], 

Plates 

! 

i 
'I 

I '  

I 

The equations i n  Table I1 for plane and cy l indr ica l  waves i n  p l a t e s  

Chou are bGed on the  two-dimensional equations derived by Hindlin [7]. 

i and Koenig p] calculated cy l inc r i ca l  waves due t o  various axisymmetrical 

loadings of a p l a t s  with a circular hole. The -. 

ar2 sa t i s f ac to ry  excent f o r  t he  case w i t h  a jump shear force input  a t  

t h e  hole; i n  which case the  procedure for the 'ca lcu la t ion  of jumps across 

t h e  second cha rac t e r i s t i c  is not  accurate. 

' w i n g  the  present technique are given i n  [lS], 

response of a p l a t e  due t o  jump shear input are reproduced i n  F g. 6. 

for easy-reference.  

numerical r e s u l t s  i n  [4] 

Inproved r e s u l t s  f o r  plates 

A few curves showing t h e  
I 

'i 
Bars 

The equations for nonhomogeneous bars are based on t h e  work by Mindlin 

- 
and Herrmann [s). 

t o  t h e  problem of a sea i - inf in i te  bar w i t h  s t e p  axial stress and zero 

ve loc i ty  applied a t  x - 0, 

Miklwitz  [21] presented t h e  Laplace transform solut ion 

H i s  solut ion was a l so  successful ly  duplicated 

by t he  present technibe. 

Sheet? - 
I 
! 
! 

8 

! 

; Equations governing the  propagation of d i l a t a t i o n a l  waves i n  d plate 
1 I 
! 
I a < (  

1 

1 
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I 
I incorporating t h e  lateral i n e r t i a  effcct wcre dcr ivcd  by Knne and Zlindlin 

[9j fo r  two-dimensional problems. 

cal waves w e r e  prcsen'ted by Jahsmm @a . 
for plane and cy l indr ica l  waves i n  norihomogencoiis material  are given. 

The corresponding cgiations €or cyl indri-  

In Table 11, corrcsponding equations 
I 

1 

! 
1 

C. Problems with Mare Than 7ko Displacemcnt Variables (n > 2) 

Several sets of approximate equations, a l l  incorporating the  r o t a r y  
3 ! 

5 

i n e r t i a  and shea r  effect, for th in  cyl indrical  s h e l l s  can a l l  be arranged . 
l 

e i n t o  tke f o m  of eqs. (l), with n = 3. 

by 'Ilerrmann and FIirsky pJ redtrcc t o  our unified form, i f ,  i n  PI,  the  

first of (IS) is multiplied by l / R  and combined with the t h i r d  multiplicd 

by minus one, ttrc resu l t ing  cquation contains second der ivat ives  of u only; 

the first of (18) minus t h e  t h i rd  multiplied by (-h /12R) gives t h e  

For instancc, t hc  equations derived 

i 
. 
I 
I 

2 

corresponding equation f o r  qX; w h i l e  the second of  (18) is already i n  the 

form of our (1). 

. - 
The three  wave'velocities detected from thcse equations, ' 

and t h e  equations governing the  propagation of d i scont inui t ies  are i n  

agreement with those obtained by S p i l l e r s  PI, who used t h e  corresponding 

set of f irst  order  equations. 

involved i n  d i f f e r e n t  s h e l l  theories ,  i n  terms of t h e  present un i f ied  

approach, as w e l l  as numerical calculations,  w i l l  be given i n  a for th-  

coming paper. 

I 

Detailed discussion of t h e  approximations 

One example f o r  the n = 4 case is the thick cy l indr ica l  s h e l l  

equations derived by nirsky and Ilerrmann . Here, i f  the  first two 

equations of (22) i n  bg a r c  multiplied by proper constants and combined, 

two equations, one containing second derivatives i n  J1 

containing second der ivat ives  i n  u only, may be obtained. 

only, the'other 
X 

Similarly,  
. the  last two equations of (22) i n  p] may be combined t o  give two equations 

each w i t h  second der ivat ives  of one variable only. 
I / *  

I 

I 
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e 

. I  

ho, ther  i n t e re s t inq  p o h  Icm t h a t  nay IIC re7rcsentcd by the  prcsent 

unified' approach is the  wave prn:ritr.?tion in h c l i c a l  sprinys [llr]. I n  

t h i s  cas0 there  are six qoncralizod dis7lnccment var iablcs  (n = 6 ) ,  

three components of displacement nnd thrcc components of ro ta t ion  of 

t h e  cross-section of the  sprinc. 

of ' t h e  Timdshonko t h c o y  for s t r a i g h t  hems. 

si? stress-displacement re la t ions ,  (49) and (SO), and s i x  equations of 

The theory is  e s sen t i a l ly  an extcnsion 

In [14] , Wittrick obtained 
I 

. 

I 
motion i n  terns of stresses and displacements, (51) and ( 5 2 ) .  Subs t i tu t ing  

I 
h i s  e+. (49) and (50) i n t o  h i s  (51) and (52), we obtain six equations 

of I the  form of our eqs. (1). I t  is in te res t ing  t o  note t h a t  for these 

the re  are only three  d i s t i n c t  wave ve loc i t i e s  for t h e  cases 

re the cross-section of t he  spring is e i t h e r  square or circular. . ., 

. *  .. 
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